Standard methods for inexpensive pollen loads authentication by means of computer vision and machine learning

نویسندگان

  • Manuel Chica
  • Pascual Campoy Cervera
چکیده

1. Introduction 2. Review on computer vision and classification methods for pollen recognition 3. General overview of the standard method and hardware requirement 4. Description of the computational techniques of the methodology 4.1 Segmentation algorithm 4.2 Homogenizing the pollen loads of the image by mean shift filtering 4.3 One-class multi-classification algorithm based on distances 5. Validation results and discussion 5.1 Experimental data and image processing results 5.2 Numerical performance of the multi-classification algorithms 5.3 Validation of the complete prototype 6. Conclusions 7. References Summary We present a complete methodology for authenticating local bee pollen against fraudulent samples using image processing and machine learning techniques. The proposed standard methods do not need expensive equipment such as advanced microscopes and can be used for a preliminary fast rejection of unknown pollen types. The system is able to rapidly reject the non-local pollen samples with inexpensive hardware and without the need to send the product to the laboratory. Methods are based on the color properties of bee pollen loads images and the use of one-class classifiers which are appropriate to reject unknown pollen samples 2 when there is limited data about them. The validation of the method is carried out by authenticating Spanish bee pollen types. Experimentation shows that the proposed methods can obtain an overall authentication accuracy of 94%. We finally illustrate the user interaction with the software in some practical cases by showing the developed application prototype. Short title Automatic pollen loads authentication

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

ارزیابی یک سیستم بینایی ماشین از راه ‌اندازه‌گیری و تخمین شماری از ویژگی‌های فیزیکی پسته

In order to increase the role of machine vision in agricultural research in Iran, especially for measuring physical attributes of seeds, a machine vision system was developed using a computer, a capture card, a video camera and a light box. All equipment was purchased from domestic markets. Computer programs were developed for hardware setup and for image processing applications. The programs p...

متن کامل

ارزیابی یک سیستم بینایی ماشین از راه ‌اندازه‌گیری و تخمین شماری از ویژگی‌های فیزیکی پسته

In order to increase the role of machine vision in agricultural research in Iran, especially for measuring physical attributes of seeds, a machine vision system was developed using a computer, a capture card, a video camera and a light box. All equipment was purchased from domestic markets. Computer programs were developed for hardware setup and for image processing applications. The programs p...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1511.04320  شماره 

صفحات  -

تاریخ انتشار 2015